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Abstract. Until now our understanding of the 11-year solar cycle signal (SCS) in stratospheric ozone has been largely based on

high quality but sparse ozone profiles from the Stratospheric Aerosol and Gas Experiment (SAGE) II or coarsely resolved ozone

profiles from the nadir-viewing Solar Backscatter Ultraviolet Radiometer (SBUV) satellite instruments. Here, we analyse 16

years (2005-2020) of ozone profile measurements from the Microwave Limb Sounder (MLS) instrument on the Aura satellite

to estimate the 11-year SCS in stratospheric ozone. Our analysis of Aura-MLS data suggests a single-peak-structured SCS5

profile (about 3% near 4 hPa or 40 km) in tropical stratospheric ozone, which is significantly different to the SAGE II and

SBUV-based double-peak-structured SCS. We also find that MLS-observed ozone variations are more consistent with ozone

from our control model simulation that uses Naval Research Laboratory (NRL) v2 solar fluxes. However, in the lowermost

stratosphere modelled ozone shows a negligible SCS compared to about 1% in Aura-MLS data. An ensemble of Ordinary

Least Square (OLS) and three regularised (Lasso, Ridge and ElasticNet) linear regression models confirms the robustness of10

the estimated SCS. Our analysis of MLS and model simulations also shows a large SCS in the Antarctic lower stratosphere

that was not seen in earlier studies. We also analyse chemical transport model simulations with alternative solar flux data. We

find that in the upper (and middle) stratosphere the model simulation with Solar Radiation and Climate Experiment (SORCE)

satellite solar fluxes is also consistent with the MLS-derived SCS and agrees well with the control simulation and one which

uses Spectral and Total Irradiance Reconstructions (SATIRE) solar fluxes. Hence, our model simulation suggests that with15

recent adjustments and corrections, SORCE solar fluxes can be used to analyse effects of solar flux variations. Finally, we

argue that the overall significantly different SCS compared to earlier estimates might be due to a combination of different

factors such as much denser MLS measurements, almost linear stratospheric chlorine loading changes over the analysis period,

as well as a stratospheric aerosol layer relatively unperturbed by major volcanic eruptions.
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1 Introduction

Changes in solar irradiance over the 11-year cycle are an important external forcing to the climate system. As the largest

changes occur at shorter wavelengths, such as the ultra-violet (UV) part of the solar spectrum, detecting related changes

in stratospheric ozone is an obvious approach to improve our understanding of solar–climate interactions (e.g. Gray et al.,

2010). Increased UV radiation during solar maximum enhances photolysis of oxygen at shorter UV wavelengths leading to25

ozone production, while at longer UV wavelengths enhanced ozone photolysis leads to net ozone loss through increased

concentrations of atomic oxygen (Haigh, 1994).

Though many chemical models have suggested a single-peak-structured solar cycle signal (SCS) in stratospheric ozone (e.g.

SPARC, 2010, Chap. 10), observation-based estimates differ widely. Chandra (1984) performed an initial attempt to estimate

SCS using satellite-derived stratospheric ozone profiles from Nimbus-4 Backscatter Ultra-Violet (BUV) radiometer data for the30

1970-1976 time period. Their analysis suggested up to 12% decrease in upper stratospheric ozone from solar maximum to solar

minimum. Later, Hood (1993) analysed 11.5 years (January 1979 to June 1990) of Nimbus-7 Solar BUV (SBUV) data and

suggested that the upper stratospheric SCS is significantly smaller than the earlier estimate (about 8%). Chandra and McPeters

(1994), Fleming et al. (1995) and McCormack and Hood (1996) also analysed about 15 years (1979-1993) of SBUV data to

report a SCS of about 6-8% near 2 hPa, and a minimum response in the mid-stratosphere. Similarly, Chandra et al. (1996)35

found that upper stratosphere ozone profiles from the Microwave Limb Sounder (MLS) on-board the Upper Atmospheric

Research Satellite (UARS) displayed a similar magnitude of ozone change, that is about 5% UV decrease (averaged between

200-205 nm) during the declining phase of solar cycle 22, which led to about 2-4% ozone decrease in the upper stratosphere.

In contrast, Wang et al. (1996) analysed Stratospheric Aerosol and Gas Experiment (SAGE) I and SAGE II ozone profiles

(1979–1991) to find an almost negligible SCS in the upper stratosphere.40

With the successful implementation of the Montreal Protocol, some satellite data were able to detect decreases in the upper

stratospheric chlorine loading. Hence, some studies such as Newchurch et al. (2003)analysed SAGE I /II (1979–2003) and

Halogen Occultation Experiment (HALOE, 1991–2003) data to suggest early signs of ozone recovery by early 2000 in upper

stratospheric ozone. However, Steinbrecht et al. (2004) analysed mid-latitude lidar-radar profiles (1987–2003) and argued that

increased solar activity might have been responsible for a sudden increase in upper stratospheric ozone after the year 2000.45

Later, Soukharev and Hood (2006) analysed 25 years of SBUV/SBUV2 (1979–2003) ozone profiles to show a minimum

SCS in the middle stratosphere and upto 2% SCS in the upper stratosphere. In contrast to Wang et al. (1996), their analysis of

SAGE II data (1985–2003) showed up to 4% SCS in the upper stratosphere but HALOE (1992–2003) data indicated opposite

trends of about -2% SCS in the middle stratosphere. In contrast, Remsberg (2008) and Remsberg and Lingenfelser (2010) also

analysed HALOE and SAGE II ozone profiles for the HALOE time period (1992-2005) to show first and second peaks near50

32 km (5 hPa) and 50 km (0.5 hPa), respectively. Recently, Dhomse et al. (2016) and Maycock et al. (2016) analysed updated

SAGE V7.0 ozone profiles to show a significantly reduced SCS in the upper stratosphere. Both of those studies also noted that
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the SCS structure is altered significantly if the analysis is performed in mixing ratio units rather than native number density

units. Recently, Ball et al. (2019) analysed updated BAyeSian Integrated and Consolidated (BASIC V2) data (1984-2016) that

also showed a double-peak-structured SCS with primary peak near 35 km and secondary peak near 24 km.55

Though most of the observation-based studies suggested a double-peak-structured SCS, initial 2-D model studies (Garcia

et al., 1984; Brasseur, 1993; Huang and Brasseur, 1993; Fleming et al., 1995) could simulate only a single-peak-structured

SCS in the middle stratosphere. The lack of double-peak structure in the chemical models was attributed to discrepancies in

the 2-D transport. Later, Dhomse et al. (2011) used a 3-D chemical transport model (CTM) to successfully simulate a double-

peak-structured SCS over 1979–2005 time period. However, most free-running 3-D chemistry-climate models (CCMs) also60

simulate only a single-peak-structured SCS in the tropical middle stratosphere (see SPARC, 2010, Figure 8.11). The inability

of CCMs to simulate a SBUV/SAGE-type SCS is generally attributed to inadequate or missing representation of key dynamical

processes such as the Quasi-Biennial Oscillation (QBO), El Nino/Southern Oscillation, changes in the meridional circulation

and stratospheric aerosol-induced chemical/dynamical changes following the El Chichon and Mt. Pinatubo volcanic eruptions

(e.g. Lee and Smith, 2003; Smith and Matthes, 2008; Dhomse et al., 2011; Chiodo et al., 2014; Dhomse et al., 2015, 2020).65

Another important factor has been large uncertainties in solar flux measurements (e.g. Ermolli et al., 2013). Most model sim-

ulations are forced with solar irradiance variability from (semi)empirical models such as NRL and SATIRE (e.g. Lean, 2000;

Krivova et al., 2010; Yeo et al., 2014; Coddington et al., 2016) that are in general good agreement with many solar observations

(Lean and DeLand, 2012; Coddington et al., 2019). However, with the launch of the Solar Radiation and Climate Experiment

(SORCE) satellite in January 2003, high resolution solar irradiance measurements suggested significantly different UV vari-70

ability (Harder et al., 2009). Using SORCE measurements some modelling studies (Haigh et al., 2010; Merkel et al., 2011;

Swartz et al., 2012) suggested a negative SCS in the upper stratosphere/lower mesosphere (US/LM). These studies included

analysis of few years of MLS and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) datasets to

show consistent changes in the observed ozone profiles. In contrast, Dhomse et al. (2013) used the same SORCE fluxes and

found that SORCE-based solar spectral irradiance (SSI) changes were not enough to explain observed ozone changes. Other75

studies soon confirmed that initial versions of SORCE data overestimated UV variability (e.g. Ermolli et al., 2013; Haberreiter

et al., 2017).

An important aspect of solar flux variability has been differences in terms of sunspot numbers (SSN) and their durations

over different solar cycles (e.g. Chapman et al., 2020). For example, SILSO World Data Center, 2021 data clearly shows

significantly different maximum monthly SSNs during solar cycle 21 (≈ 210), 22 (≈ 200), 23 (≈ 150) and 24 (≈ 100).80

This clearly highlights that recent solar cycles had values about 200 reducing to 150 and 100 during solar cycles 23 and 24,

respectively. This indicates that solar flux variability (solar maxima minus solar minima) would have different characteristics

over different solar cycles. Hence, Dhomse et al. (2015) analysed model and satellite data sets over different time period to

show differences in SCS magnitudes depending on analysis period such as 1979–2013 (SBUV), 1984–2005 (SAGE), 1992–

2005 (HALOE), 2004–2013 (MLS). However, for each analysis period, both satellite and model-simulated ozone profiles85

showed a double-peak-structured SCS in the tropical stratospheric ozone. It is important to note that the SBUV, SAGE II and
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HALOE analysis periods include years where the stratospheric aerosol layer was strongly perturbed by El Chichon and/or Mt

Pinatubo volcanic eruptions.

Overall, there is still a large uncertainty in our understanding of the true nature of the ozone SCS profile as most estimates

rely on sparsely sampled solar occultation instruments (SAGE II, HALOE) or SBUV data with poor vertical resolution, and90

may depend on the time period considered (e.g. Remsberg and Lingenfelser, 2010; Dhomse et al., 2015) . Here, we analyse 16

years (2005–2020) of updated, high quality and densely sampled MLS ozone profiles to quantify the stratospheric SCS. We also

use the TOMCAT/SLIMCAT 3-D CTM to analyse effects of different updated solar fluxes. Finally, we present the estimated

SCS profile using different linear regression models such as Ordinary Least Square (OLS), Lasso, Ridge, and ElasticNet. The

model setup and satellite data used here are described in Section 2 followed by details of our regression model in Section 3.95

Key results are discussed in Section 4.

2 Model Set Up and Satellite data

We have performed simulations with the TOMCAT three dimensional CTM (Chipperfield, 2006; Chipperfield et al., 2017) for

the 2004–2020 time period. The model setup is similar to the control simulation used in our recent studies (e.g. Feng et al.,

2021; Weber et al., 2021). Briefly, the model contains a detailed description of stratospheric chemistry and is forced using100

European Centre for Medium-Range Weather Forecasts Fifth generation reanalysis (ERA-5) dynamical fields (Hersbach et al.,

2020). Model simulations are performed at 2.8◦ × 2.8◦ horizontal resolution with 32 levels ranging from the surface to

∼60 km. Surface concentrations of ozone depleting substances (ODSs) and greenhouse gases are from Engel et al. (2018b).

Stratospheric sulfate aerosol surface density (SAD) data are from ftp://iacftp.ethz.ch/pub_read/luo/CMIP6/ and updated since

Dhomse et al. (2015) to extend until 2018. As the equivalent SAD values are not yet released for later years, we use monthly105

averaged SAD (1996–2005) for 2019 and 2020. Thus, our analysis will miss the impact on ozone of SAD changes following

the Raikoke and Ulawun eruptions in June 2019. The model also includes contributions from four chlorinated very short-

lived substances (CH2Cl2, CHCl3, C2Cl4, and C2H4Cl2) as described in Hossaini et al. (2017, 2019). Additionally, the model

includes a fixed 5 ppt of stratospheric Bry from brominated VSLS CHBr3 (1 ppt) and CH2Br2 (1 ppt) (e.g. Feng et al., 2007).

To understand the effects of solar irradiance variability on the evolution of ozone, we performed four simulations with110

different solar fluxes. Three simulations use solar irradiance variability from NRLSSI V2 (hearafter NRL2, Coddington et al.,

2016), SATIRE (Yeo et al., 2014), SORCE (Harder et al., 2019) and are labelled A_NRL, B_SAT and C_SOR, respectively. As

TOMCAT has much coarser 203 spectral bins in the photolysis scheme (Lyman alpha and 170-850 nm), daily high-resolution

SSI data sets are integrated for model spectral bins before calculating monthly means (e.g. Dhomse et al., 2011, 2013). The

fourth model simulation, D_SFix, uses constant solar fluxes for the entire 2005–2020 time period. NRL2, SATIRE, and SORCE115

v19 data are obtained via the Laboratory for Atmospheric and Space Physics (LASP) Solar Irradiance data Center (https:

//lasp.colorado.edu/lisird/) at University of Colorado.

This study primarily focuses on the analysis of MLS version 5 (v5) data. Daily MLS ozone profiles are obtained from

https://disc.gsfc.nasa.gov/datasets?page=1&keywords=ML2O3_005 (last access : June 2021). MLS profiles have been filtered
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according to the guidelines specified by Livesey et al. (2020), who provide a critical analysis of the v5 dataset. Briefly, the120

scientifically useful altitude range for MLS ozone profiles is from 261 hPa to 0.001 hPa. The retrieval precision (∼2%) and

accuracy (∼6%) are optimum near 10 hPa but degrade above and below that level, reaching values of 30% and 10%, respec-

tively, at 0.2 hPa and 100 hPa, the extremes of the domain shown in this study. MLS zonal monthly means are calculated by

binning the profiles onto 64 latitude intervals (TOMCAT model latitudes).

3 Multivariate Regression Model125

Here we use an ensemble of multivariate linear regression (MLR) models to estimate the SCS in both MLS and TOMCAT

ozone profiles. The basic MLR set up is a slightly modified version to that used in Dhomse et al. (2011). Briefly, the MLR

has 52 terms, including 12 monthly linear trend terms, 24 QBO terms (at 30 and 50 hPa) as well 12 age-of-air (AoA) TOM-

CAT tracer terms to account for inter-annual dynamical variability. For solar flux variability, we include the composite Mg-II

index from University of Bremen, Germany, via http://www.iup.uni-bremen.de/UVSAT/Datasets/mgii (Snow et al., 2014). El130

Nino/ Southern Oscillation (ENSO), Arctic Oscillation (AO) and Antarctic Oscillation (AAO) index terms are also included

to account for effects of important tele-connection patterns. QBO, ENSO, AO, and AAO indices are obtained from Climate

Prediction Center, via https://www.cpc.ncep.noaa.gov/ (last access: 15 May 2021). To simplify interpretation of regression

coefficients, excluding 12 linear trend terms, all the explanatory variables are detrended and normalised between 0 and 1. As

F10.7 solar flux changes over the 2005–2020 time period are about 99.4 units, estimated SCS using normalised Mg-II index135

can be considered to be the same as SCS per 100 solar flux units.

MLR models include various explanatory variables to separate the influence of individual processes, but they are required to

be completely independent. However, to some extent most atmospheric processes are coupled. Hence, most previous studies

have used OLS regression models that suffer from multi-collinearity issues. For example, the two QBO terms used here as

well as in various earlier studies are not completely independent. Dynamical proxies such as age-of-air (or eddy heat fluxes140

in Dhomse et al. (2006)), are also coupled with the QBO phase via the Holton-Tan mechanism (Holton and Tan, 1982). Ad-

ditionally, OLS models are designed to minimise errors but have relatively high variance. This means even slight changes in

explanatory variables lead to large changes in the estimated regression coefficients. Therefore, we use an ensemble of reg-

ularised least squares (RLS) models. RLS models constrain or shrink regression coefficients to reduce the variance. Ridge

regression (or L1 regularisation) uses Tikhonov regularisation (Hoerl and Kennard, 1970), where coefficients for all the param-145

eters are scaled down with optimum weight or penalty term. In contrast, Lasso regression (L2 regularisation, Tibshirani, 1996)

uses the square of the penalty term to scale down the regression coefficients.ElasticNet regression (Zou and Hastie, 2005) com-

bines the strengths of Lasso and Ridge regression to scale down the regression coefficients. Regression models used here are

from Python scikit module (Pedregosa et al., 2011). For details see https://scikit-learn.org/stable/modules/linear_model.html

(last access: 30 July 2021)150
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4 Results

Different combinations of multivariate regression models are used to estimate long-term ozone trends as well as to quantify the

influence of important processes on ozone variability (e.g. Braesicke et al., 2018; Petropavlovskikh et al., 2019). Here, we use

identical regression models to estimate the SCS in stratospheric ozone from MLS and the model simulations described above.

Figure 1 compares MLS ozone anomalies and OLS MLR-fitted regression lines near the equator (1.5◦ latitude) at 9 pressure155

levels. As expected, the largest ozone variability (≈± 15%) is observed in the lower stratosphere (46.4 hPa) and its magnitude

declines almost linearly to higher altitudes except 14.6 hPa. Minimum variability seen near 14.6 hPa is somewhat puzzling and

one possible explanation might be damping effects of QBO and semi-annual oscillation related ozone variability near these

levels. Overall, the regression lines show excellent agreement with MLS ozone anomalies and the residuals are less than a few

percent at all levels. Somewhat larger residuals (up to 5%) occur near 46 hPa, indicating that even with 24 QBO terms, the160

regression model has difficulty in capturing ozone changes due to the unusual QBO behaviour over the last decade (e.g. Osprey

et al., 2016; Anstey et al., 2021).

Figure 2 shows the MLS observation-based SCS (2005–2020) for the tropical latitude band (20◦S–20◦N). The SCS estimated

using HALOE (1992–2005, volume mixing ratio, vmr), SAGE II (1984–2005, vmr), SAGE II (1984–2005, number density)

and SBUV (1979–2005, vmr) presented in Dhomse et al. (2011, 2015) are also shown for direct comparison. Figure 2 clearly165

shows that the MLS-based SCS is significantly different to that from all other datasets, although with some similarity to the

HALOE-based SCS. A key feature is that the MLS SCS shows a clear broad positive peak in the mid-upper stratosphere that

is almost twice as large as any other satellite-data based SCS reported in the past (e.g. Soukharev and Hood, 2006; Remsberg

and Lingenfelser, 2010). It is also somewhat consistent with latest BASIC v2 based estimates (1984-2016) presented in Ball

et al. (2019), though MLS shows about 50% larger peak around 40 km against around 35 km seen BASIC data. It is important170

to note, however, that for the 2004–2016 time period, MLS data is used in the BASIC v2 reconstruction. Near the stratopause

region (around 50 km), only MLS and HALOE show a SCS of less than 1%. The clear difference between MLS versus SAGE

II, HALOE and SBUV could be due to a combination of various factors. First, as SAGE and HALOE use the solar occultation

technique, even in ideal conditions they provide only about 900 profiles per month over the whole globe. Hence, fewer and

sparser profiles are used to calculate monthly mean profiles. In contrast, MLS is a thermal emission limb sounder with a175

few hundred thousand profiles available for monthly mean calculations. Hence, the MLS-derived SCS suffers minimal impact

from non-uniform temporal sampling compared to SAGE and HALOE (e.g. Toohey et al., 2013; Sofieva et al., 2014; Millán

et al., 2016). Second, the HALOE and SAGE II data cover a period that has non-linear changes in the equivalent effective

stratospheric chlorine loading (EESC, e.g. Newman et al., 2007; Engel et al., 2018a), whereas MLS covers a period where

EESC is decreasing almost linearly in response to action taken under the Montreal Protocol (e.g. Kohlhepp et al., 2012; Strahan180

and Douglass, 2018). Third, all of the satellite ozone retrieval algorithms rely on meteorological (re)analysis datasets for the

background atmospheric state. Therefore, with technological advances as well as the huge increase in the number of assimilated

meteorological observations, the MLS retrieval scheme might have some advantage over the earlier data records. Fourth, the

eruption of Mt Pinatubo in June 1991 injected about 14 and 23 Tg SO2 into the stratosphere (e.g. Guo et al., 2004), leading
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to significant enhancement in the stratospheric aerosol layer for few years. The enhanced stratospheric aerosols lead to larger185

ozone retrieval errors for occultation instruments, particularly in the lower stratosphere (e.g. Wang et al., 1996; Thomason,

2012). Enhanced stratospheric aerosols from Mt Pinatubo also caused significant changes in the stratospheric circulation (e.g.

Dhomse et al., 2015, 2020) that could have had an impact on the SCS estimates. Fifth, MLS observations cover the recent solar

cycle (number 24, 2009–2020), which is one of the weakest cycles over the last century, hence SSI changes may have been

somewhat different than for earlier solar cycles. Sixth, SBUV and SBUV/2 are nadir-viewing instruments with very coarse190

vertical resolution, especially in the upper stratosphere, which can lead to different (and smoother) SCS profiles.

Another very important difference is observed in the lower stratosphere, where MLS suggests a much smaller (±1%) SCS

compared to about 5% SCS in the SAGE II data. It has been long postulated that the lower stratospheric SCS is most probably

due to the aliasing effect of volcanic eruptions, QBO and ENSO (e.g. Lee and Smith, 2003; Chiodo et al., 2014). In fact,

Dhomse et al. (2011) clearly showed that a CTM simulation with annually repeating dynamics produced a secondary peak in195

the tropical lower stratosphere that was significantly smaller when simulations are performed with fixed stratospheric aerosols.

As there have been no significant volcanic eruptions during the MLS period, this suggests that the large positive SCS in the

tropical lower stratosphere reported in SBUV and SAGE II-based studies is most probably due to non-linear changes in EESC

and influences from strongly perturbed stratospheric aerosol layer following major volcanic eruptions.

We performed the MLS-like analysis on TOMCAT-simulated ozone profiles from runs A_NRL, B_SAT, and C_SOR for all200

64 latitude bands and 36 pressure levels ranging from 300 to 0.1 hPa. Comparisons between model and MLS tropical (20◦S–

20◦N) ozone anomalies at five different pressure levels are shown in Figure 3. Overall, anomalies from all the simulations show

very similar ozone variations, and mean ozone differences in the tropics are within ±1% at all pressure levels. An important

aspect in Figure 3 is that even at 1 hPa ozone differences are consistently less than 1%, suggesting consistency between all

three solar flux datasets. This clearly highlights that earlier studies showing large negative SCS simulated using SORCE data205

(e.g. Haigh et al., 2010; Merkel et al., 2011) must have predicted unrealistic ozone variations due to biases in SORCE data as

well as much shorter MLS time series.

Figure 4 shows SCS estimates for the three model simulations as well as MLS data using OLS and three regularised (Lasso,

Ridge, and ElasticNet) regression models. As expected, regression coefficients from the three regularised models (Lasso, Ridge

and ElasticNet) are somewhat smaller than OLS estimates, but overall all the regression models show consistent behaviour.210

Some key features are a maximum SCS near the tropical mid-upper stratosphere (near 4 hPa or 40 km) and a negative SCS

in the low- and mid-latitude lower stratosphere. It is important to note that the MLS and model-based SCS are statistically

significant (2-σ) in the tropical and mid-latitude middle stratospheric region (between 30 and 3 hPa). Larger uncertainty in

the estimated SCS at the high latitude lower stratosphere must be due to the relatively short available time series (16 years)

and large interannual variability in those regions. Additionally, a second lobe of positive SCS extending from the tropical215

middle stratosphere to the Arctic lower stratosphere (near 50 hPa) is clearly visible in all the panels. This is consistent with an

earlier analysis by Labitzke and Loon (1988). However, an unexpected feature is that except for the Lasso regression model, a

large SCS near the Antarctic lower stratosphere is visible in all the models. To our knowledge, this type of strong SCS in the

Antarctic stratosphere has not been reported in earlier studies. It could be due to a combination of various factors. First, most
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of the earlier studies used SBUV, SAGE or HALOE datasets that have limited coverage during dark polar night. Second, the220

sudden stratospheric warming in the 2019 Antarctic polar vortex stratosphere (e.g. Lim et al., 2020) and wave activity in other

recent years, as well as ongoing EESC decreases, might have caused the aliasing effect for the SCS estimation.

Figure 5 compares the mean SCS for the tropics (20◦S-20◦N) from the four different regression models shown in Figure 4.

As seen in Figure 1, MLS shows the largest SCS near 4 hPa and all the model simulations also show similar SCS profiles. Most

importantly, the SCS based on runs A_NRL and B_SAT show nearly identical behaviour. This suggests that although there are225

non-negligible differences between the construction of the NRL2 and SATIRE solar irradiances (e.g. Yeo et al., 2014; Matthes

et al., 2017; Coddington et al., 2019), their wavelength-dependent differences cancel out to produce a nearly identical SCS in

stratospheric ozone. In terms of magnitude, OLS-based estimates suggest that MLS shows up to a 3% SCS near 4 hPa (∼40

km), while the NRL2 and SATIRE peaks are about 4.5% and the SORCE peak lies between the MLS and NRL2 estimates.

An important feature in Figure 5 is that even with regularisation, the MLS-based SCS does not show a significant reduction or230

alternation, confirming the robustness of the estimated SCS.

In the lower stratosphere (below 25 km) all the simulations show a smaller (or more negative) SCS compared to MLS.

As expected, the regularisation models (Lasso, Ridge and ElasticNet) do not change the profile structure significantly but the

estimated magnitudes are somewhat smaller in magnitude with similar behaviour in the 3 model simulations. Interestingly,

even with regularisation the MLS-based SCS does not turn negative in the upper stratosphere, indicating that earlier SORCE-235

based studies (e.g. Haigh et al., 2010; Merkel et al., 2011; Ball et al., 2016) were likely impaired by their shorter timescales as

well as biases in an earlier version of the SORCE dataset.

Finally, as run C_SOR shows somewhat better agreement with MLS-based SCS (though within associated uncertainties)

compared to runs A_NRL and B_SAT, we analyse the difference between the model simulations. Figure 6 shows trop-

ical (20◦S-20◦N) percentage ozone differences between three model simulations with time-varying solar fluxes (A_NRL,240

B_SAT and C_SOR) and a simulation with fixed solar fluxes (D_SFix, which uses the mean 2005-2020 NRL V2 fluxes). As

expected, all comparisons show the largest ozone difference in the mid-upper stratosphere. The time-varying solar flux simula-

tions show a steady decline in ozone differences until 2008 and positive ozone changes after 2011 (solar maximum), followed

by ozone decrease after 2016. Interestingly, C_SOR show much larger positive differences during 2004/2005 that hardly turn

negative in 2008, but show up to -3% ozone differences in 2016. As seen in Figure 6, both runs A_NRL and B_SAT show245

a similar pattern in ozone differences, though the magnitude of ozone change is somewhat larger in run B_SAT. A somewhat

different structure in ozone difference during maxima and minima might be due to differences in absolute solar fluxes.

The most interesting aspect in Figure 6 is that near 5 hPa, run C_SOR shows up to +3% ozone difference between 2005–

2008 compared to about +2% in runs A_NRL and B_SAT. Similarly, after 2016 run C_SOR shows ozone differences over

-3% in magnitude in the mid-upper stratospheric ozone which is around 1.5× larger than runs A_NRL and B_SAT. So,250

although there are significant variations ozone difference patterns, various model simulations clearly show that all of the solar

flux datasets lead to similar patterns in ozone variation, i.e. ozone increases towards solar maxima followed by steady decline

towards solar minima. Thus, the results from composite analysis are consistent with the regression analysis. However, the

magnitude of ozone variations with respect to the NRL V2-based fixed solar flux simulation is almost double in a simulation
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with SORCE solar fluxes, whereas regression analysis suggests run C_SOR has a weaker SC in the low-mid stratosphere.255

This clearly highlights that model-simulated ozone changes depend on both magnitude of solar irradiances as well as their time

variations. Most importantly, somewhat different (and non-linear) ozone differences seen in C_SOR suggests that SORCE

solar fluxes may still have some time-varying biases.

5 Conclusions

Our key result is that we have presented an analysis of the solar cycle signal (SCS) in stratospheric ozone based on MLS260

v5 satellite data (2005-2020). Previously, our understanding of the ozone SCS has been largely based on 22 years of SAGE

II v7 data (Dhomse et al., 2016; Maycock et al., 2016). As the MLS satellite instrument has a much better spatial coverage

than any other ozone dataset providing more than 16 years of continuous ozone profile measurements, it is ideally suited for

re-evaluating our understanding of the processes controlling/modifying stratospheric ozone. MLS data also covers a period

where EESC changes are almost linear and there has been no major volcanically induced perturbation to the stratospheric265

aerosol layer, hence the SCS attribution is relatively cleaner than in previous datasets where trends as well as attribution are

complicated as they include periods with strong volcanic eruptions.

Our analysis suggests a single-peak-structured SCS in the tropical stratosphere, which is significantly different to that derived

in previous studies based on SAGE II and SBUV datasets during earlier periods. In contrast, the MLS-based SCS shows a

similar structure to that from HALOE data, although its peak amplitude near 3 hPa is almost double that of HALOE (up to270

3%). The lack of a secondary peak in MLS satellite data suggests that the Mt. Pinatubo volcanic eruption induced chemical

and dynamical changes which caused an aliasing effect in the estimated SCS. This analysis is consistent with the postulations

discussed in modelling studies such as Lee and Smith (2003), Dhomse et al. (2011) and Chiodo et al. (2014).

We also performed three model sensitivity simulations with different solar flux datasets: NRL2, SATIRE and SORCE. We

find that the SCS from the simulation with SORCE fluxes is somewhat smaller in magnitude but is within the uncertainties seen275

in the MLS-derived SCS as well as NRL2 and SATIRE data. Overall, all three model simulations show SCS structures very

similar to that in MLS data. Most importantly, it suggests that with recent adjustments and corrections (Harder et al., 2019),

SORCE data can be used to study the effects of solar flux variations, though some time-varying biases in SORCE data cannot

be ruled out. We also performed an ensemble of linear regression models (OLS, Lasso, Ridge and ElasticNet) that confirm

the robustness of the SCS. All of the regression models show a broad peak near low-mid latitudes around 4 hPa. MLS data280

and model simulations also indicate a much larger SCS in the Antarctic stratosphere that could be due to the aliasing effect of

ozone recovery due to a decrease in EESC loading as well as changes in stratospheric transport in the SH. Finally, regression

and composite analyses of model simulations with respect to fixed solar flux simulations suggest that both absolute magnitude

as well as time variations in solar flux forcing data sets play key roles in SCS estimates.
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Data availability. MLS data is publicly available via https://disc.gsfc.nasa.gov/. TOMCAT data can be downloaded from http://homepages.285

see.leeds.ac.uk/~fbsssdh/TOMCAT_SOLAR/. NRLV2, SATIRE and SORCE Solar Irradiance data Center https://lasp.colorado.edu/lisird/.

Solar activity proxy index (Mg II index) is available at http://www.iup.uni-bremen.de/UVSAT/Datasets/mgii. QBO, ENSO, AO, AAO indices

are obtained from Climate Prediction Center, via https://www.cpc.ncep.noaa.gov/.

Competing interests. Authors have no competing interests.

Acknowledgements. We are grateful to William Ball for useful comments. SSD was supported by the NERC SISLAC project (NE/R001782/1)290

and NCEO Grant number NE/R016518/1. We thank NASA for MLS v5 data. Work at the Jet Propulsion Laboratory, California Institute of

Technology, was carried out under a contract with the National Aeronautics and Space Administration. We thank the European Centre for

Medium-Range Weather Forecasts for providing their analyses. The model simulations were performed on the UK national Archer and Leeds

Arc4 HPC systems.

10

https://doi.org/10.5194/acp-2021-663
Preprint. Discussion started: 25 August 2021
c© Author(s) 2021. CC BY 4.0 License.



References295

Anstey, J. A., Banyard, T. P., Butchart, N., Coy, L., Newman, P. A., Osprey, S., and Wright, C. J.: Prospect of Increased Disruption to the QBO

in a Changing Climate, Geophysical Research Letters, 48, e2021GL093 058, https://doi.org/10.1029/2021GL093058, e2021GL093058

2021GL093058, 2021.

Ball, W., Haigh, J., Rozanov, E., Kuchar, A., Sukhodolov, T., Tummon, F., Shapiro, A., and Schmutz, W.: High solar cycle spectral variations

inconsistent with stratospheric ozone observations, Nature Geoscience, 9, 206–209, 2016.300

Ball, W. T., Rozanov, E. V., Alsing, J., Marsh, D. R., Tummon, F., Mortlock, D. J., Kinnison, D., and Haigh, J. D.: The Upper Stratospheric

Solar Cycle Ozone Response, Geophysical Research Letters, 46, 1831–1841, https://doi.org/10.1029/2018GL081501, 2019.

Braesicke, P., Neu, J. L., Fioletov, V. E., Godin-Beekmann, S., Hubert, D., Petropavlovskikh, I., Shiotani, M., Sinnhuber, B.-M., Ball, W.,

Chang, K.-L., Damadeo, R., Dhomse, S., Frith, S., Gaudel, A., Hassler, B., Hossaini, R., Kremser, S., Misios, S., Morgenstern, O.,

Salawitch, R. J., Sofieva, V., Tourpali, K., Tweedy, O., and Zawada, D.: Update on Global Ozone: Past, Present, and Future, Chapter 3 in305

WMO Scientific Assessment of Ozone Depletion (2018), Tech. rep., WMO/UNEP, https://elib.dlr.de/135132/, 2018.

Brasseur, G.: The response of the middle atmosphere to long-term and short-term solar variability: a two-dimensional model, Journal of

Geophysical Research, 98, https://doi.org/10.1029/93jd02406, 1993.

Chandra, S.: An assessment of possible ozone-solar cycle relationship inferred from NIMBUS 4 BUV data, Journal of Geophysical Research:

Atmospheres, 89, 1373–1379, https://doi.org/10.1029/JD089iD01p01373, 1984.310

Chandra, S. and McPeters, R. D.: The solar cycle variation of ozone in the stratosphere inferred from Nimbus 7 and NOAA 11 satellites,

Journal of Geophysical Research, 99, 20 665–20 671, https://doi.org/10.1029/94jd02010, 1994.

Chandra, S., Froidevaux, L., Waters, J. W., White, O. R., Rottman, G. J., Prinz, D. K., and Brueckner, G. E.: Ozone variabil-

ity in the upper stratosphere during the declining phase of the solar cycle 22, Geophysical Research Letters, 23, 2935–2938,

https://doi.org/10.1029/96GL02760, 1996.315

Chapman, S. C., McIntosh, S. W., Leamon, R. J., and Watkins, N. W.: Quantifying the Solar Cycle Modulation of Extreme Space Weather,

Geophysical Research Letters, 47, e2020GL087 795, https://doi.org/10.1029/2020GL087795, e2020GL087795 10.1029/2020GL087795,

2020.

Chiodo, G., Marsh, D., Garcia-Herrera, R., Calvo, N., and García, J.: On the detection of the solar signal in the tropical stratosphere,

Atmospheric Chemistry and Physics, 14, 5251–5269, 2014.320

Chipperfield, M. P.: New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer

experiments, Quarterly Journal of the Royal Meteorological Society, 132, 1179–1203, https://doi.org/10.1256/qj.05.51, 2006.

Chipperfield, M. P., Bekki, S., Dhomse, S., Harris, N. R., Hassler, B., Hossaini, R., Steinbrecht, W., Thiéblemont, R., and Weber, M.:

Detecting recovery of the stratospheric ozone layer, Nature, 549, 211–218, 2017.

Coddington, O., Lean, J. L., Pilewskie, P., Snow, M., and Lindholm, D.: A Solar Irradiance Climate Data Record, Bulletin of the American325

Meteorological Society, 97, 1265–1282, https://doi.org/10.1175/BAMS-D-14-00265.1, 2016.

Coddington, O., Lean, J., Pilewskie, P., Snow, M., Richard, E., Kopp, G., Lindholm, C., DeLand, M., Marchenko, S., Haberreiter, M.,

and Baranyi, T.: Solar Irradiance Variability: Comparisons of Models and Measurements, Earth and Space Science, 6, 2525–2555,

https://doi.org/10.1029/2019EA000693, 2019.

Dhomse, S., Weber, M., Wohltmann, I., Rex, M., and Burrows, J.: On the possible causes of recent increases in northern hemispheric total330

ozone from a statistical analysis of satellite data from 1979 to 2003, Atmospheric chemistry and physics, 6, 1165–1180, 2006.

11

https://doi.org/10.5194/acp-2021-663
Preprint. Discussion started: 25 August 2021
c© Author(s) 2021. CC BY 4.0 License.



Dhomse, S., Chipperfield, M. P. M. P., Feng, W., and Haigh, J. D.: Solar response in tropical stratospheric ozone: a 3-D chemical transport

model study using ERA reanalyses, Atmospheric Chemistry and Physics, 11, 12 773–12 786, https://doi.org/10.5194/acp-11-12773-2011,

2011.

Dhomse, S., Chipperfield, M., Damadeo, R., Zawodny, J., Ball, W., Feng, W., Hossaini, R., Mann, G., and Haigh, J.: On the am-335

biguous nature of the 11 year solar cycle signal in upper stratospheric ozone, Geophysical Research Letters, 43, 7241–7249,

https://doi.org/10.1002/2016GL069958, 2016.

Dhomse, S. S., Chipperfield, M. P., Feng, W., Ball, W. T., Unruh, Y. C., Haigh, J. D., Krivova, N. A., Solanki, S. K., and Smith, A. K.:

Stratospheric O-3 changes during 2001-2010: the small role of solar flux variations in a chemical transport model, Atmospheric Chemistry

and Physics, 13, 10 113–10 123, https://doi.org/10.5194/acp-13-10113-2013, 2013.340

Dhomse, S. S., Chipperfield, M. P., Feng, W., Hossaini, R., Mann, G. W., and Santee, M. L.: Revisiting the hemispheric asymmetry in

midlatitude ozone changes following the Mount Pinatubo eruption: A 3-D model study, Geophysical Research Letters, 42, 3038–3047,

https://doi.org/10.1002/2015GL063052, 2015.

Dhomse, S. S., Mann, G. W., Antuña Marrero, J. C., Shallcross, S. E., Chipperfield, M. P., Carslaw, K. S., Marshall, L., Abraham,

N. L., and Johnson, C. E.: Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963345

Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds, Atmospheric Chemistry and Physics, 20, 13 627–13 654,

https://doi.org/10.5194/acp-20-13627-2020, 2020.

Engel, A., Bönisch, H., Ostermöller, J., Chipperfield, M. P., Dhomse, S., and Jöckel, P.: A refined method for calculating equivalent effective

stratospheric chlorine, Atmospheric Chemistry and Physics, 18, 601–619, https://doi.org/10.5194/acp-18-601-2018, 2018a.

Engel, A., Rigby, M., Burkholder, J., Fernandez, R., Froidevaux, L., Hall, B., Hossaini, R., Saito, T., Vollmer, M., and Yao, B.: Update on350

Ozone-Depleting Substances (ODSs) and other gases of interest to the Montreal Protocol, Chapter 1 in Scientific Assessment of Ozone

Depletion: 2018, Global Ozone Research and Monitoring Project, Tech. rep., WMO/UNEP, 2018b.

Ermolli, I., Matthes, K., de Wit, T. D., Krivova, N. A., Tourpali, K., Weber, M., Unruh, Y. C., Gray, L., Langematz, U., Pilewskie, P., Rozanov,

E., Schmutz, W., Shapiro, A., Solanki, S. K., and Woods, T. N.: Recent variability of the solar spectral irradiance and its impact on climate

modelling, Atmospheric Chemistry and Physics, 13, 3945–3977, https://doi.org/10.5194/acp-13-3945-2013, 2013.355

Feng, W., Chipperfield, M. P., Dorf, M., Pfeilsticker, K., and Ricaud, P.: Mid-latitude ozone changes: studies with a 3-D CTM forced by

ERA-40 analyses, Atmospheric Chemistry and Physics, 7, 2357–2369, https://doi.org/10.5194/acp-7-2357-2007, 2007.

Feng, W., Dhomse, S. S., Arosio, C., Weber, M., Burrows, J. P., Santee, M. L., and Chipperfield, M. P.: Arctic Ozone Deple-

tion in 2019/20: Roles of Chemistry, Dynamics and the Montreal Protocol, Geophysical Research Letters, 48, e2020GL091 911,

https://doi.org/10.1029/2020GL091911, e2020GL091911 2020GL091911, 2021.360

Fleming, E. L., Chandra, S., Jackman, C. H., Considine, D. B., and Douglass, A. R.: The middle atmospheric response to short and long

term solar UV variations: analysis of observations and 2D model results, Journal of Atmospheric and Terrestrial Physics, 57, 333–365,

https://doi.org/10.1016/0021-9169(94)E0013-D, 1995.

Garcia, R. R., Solomon, S., Roble, R. G., and Rusch, D. W.: A numerical response of the middle atmosphere to the 11-year solar cycle,

Planetary and Space Science, 32, 411–423, https://doi.org/10.1016/0032-0633(84)90121-1, 1984.365

Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., et al.: Solar

influences on climate, Reviews of Geophysics, 48, 2010.

Guo, S., Bluth, G. J. S., Rose, W. I., Watson, I. M., and Prata, A. J.: Reevaluation of SO2 release of the 15 June 1991 Pinatubo eruption using

ultraviolet and infrared satellite sensors, Geochemistry, Geophysics, Geosystems, 5, https://doi.org/10.1029/2003GC000654, 2004.

12

https://doi.org/10.5194/acp-2021-663
Preprint. Discussion started: 25 August 2021
c© Author(s) 2021. CC BY 4.0 License.



Haberreiter, M., Schöll, M., Dudok de Wit, T., Kretzschmar, M., Misios, S., Tourpali, K., and Schmutz, W.: A new observational solar370

irradiance composite, Journal of Geophysical Research: Space Physics, 122, 5910–5930, 2017.

Haigh, J., Winning, A., Toumi, R., and Harder, J.: An influence of solar spectral variations on radiative forcing of climate, Nature, http:

//www.nature.com/nature/journal/v467/n7316/abs/nature09426.html, 2010.

Haigh, J. D.: The role of stratospheric ozone in modulating the solar radiative forcing of climate, Nature, 370, 544–546, 1994.

Harder, J. W., Fontenla, J. M., Pilewskie, P., Richard, E. C., and Woods, T. N.: Trends in solar spectral irradiance variability in the visible375

and infrared, Geophysical Research Letters, 36, https://doi.org/10.1029/2008GL036797, 2009.

Harder, J. W., Beland, S., and Snow, M.: SORCE-based solar spectral irradiance (SSI) record for input into chemistry-climate studies, Earth

and Space Science, 6, 2487–2507, 2019.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Sim-

mons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,380

P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J.,

Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Vil-

laume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049,

https://doi.org/10.1002/qj.3803, 2020.

Hoerl, A. E. and Kennard, R. W.: Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12, 55–67, 1970.385

Holton, J. R. and Tan, H.-C.: The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere, Journal of the Meteorological

Society of Japan. Ser. II, 60, 140–148, 1982.

Hood, L.: Quasi-decadal variability of the stratosphere: Influence of long-term solar ultraviolet variations, Journal of the . . . , http://journals.

ametsoc.org/doi/abs/10.1175/1520-0469(1993)050%3C3941%3AQDVOTS%3E2.0.CO%3B2, 1993.

Hossaini, R., Chipperfield, M. P., Montzka, S. A., Leeson, A. A., Dhomse, S. S., and Pyle, J. A.: The increasing threat to stratospheric ozone390

from dichloromethane, Nature Communications, 8, 1–9, 2017.

Hossaini, R., Atlas, E., Dhomse, S. S., Chipperfield, M. P., Bernath, P. F., Fernando, A. M., Mühle, J., Leeson, A. A., Montzka, S. A., Feng,

W., et al.: Recent trends in stratospheric chlorine from very short-lived substances, Journal of Geophysical Research: Atmospheres, 124,

2318–2335, 2019.

Huang, T. Y. and Brasseur, G. P.: Effect of long-term solar variability in a two-dimensional interactive model of the middle atmosphere,395

Journal of Geophysical Research, 98, https://doi.org/10.1029/93jd02187, 1993.

Kohlhepp, R., Ruhnke, R., Chipperfield, M. P., Maziere, M. D., Notholt, J., Barthlott, S., Batchelor, R. L., Blatherwick, R. D., Blumenstock,

T., Coffey, M., et al.: Observed and simulated time evolution of HCl, ClONO 2, and HF total column abundances, Atmospheric Chemistry

and Physics, 12, 3527–3556, 2012.

Krivova, N. A., Vieira, L. E. A., and Solanki, S. K.: Reconstruction of solar spectral irradiance since the Maunder minimum, Journal of400

Geophysical Research: Space Physics, 115, https://doi.org/10.1029/2010JA015431, 2010.

Labitzke, K. and Loon, H. V.: Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: the troposphere and strato-

sphere in the northern hemisphere in winter, Journal of Atmospheric and Terrestrial Physics, 50, 197–206, https://doi.org/10.1016/0021-

9169(88)90068-2, 1988.

Lean, J.: Evolution of the Sun’s spectral irradiance since the Maunder Minimum, Geophysical research letters, 27, 2425–2428, 2000.405

Lean, J. L. and DeLand, M. T.: How Does the Sun’s Spectrum Vary?, Journal of Climate, 25, 2555–2560, https://doi.org/10.1175/JCLI-D-

11-00571.1, 2012.

13

https://doi.org/10.5194/acp-2021-663
Preprint. Discussion started: 25 August 2021
c© Author(s) 2021. CC BY 4.0 License.



Lee, H. and Smith, A.: Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric

ozone changes in recent decades, Journal of Geophysical Research: Atmospheres, 108, 2003.

Lim, E.-P., Hendon, H. H., Butler, A. H., Garreaud, R. D., Polichtchouk, I., Shepherd, T. G., Scaife, A., Comer, R., Coy, L., Newman, P. A.,410

et al.: The 2019 Antarctic sudden stratospheric warming, SPARC newsletter, 54, 10–13, 2020.

Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Santee, M. L., Schwartz, M. J., Lambert, A., Millan, L., Pumphrey, H. C., Manney,

G. L., A., F. R., Jarnot, R. F., Knosp, B. W., and Lay, R. R.: EOS MLS Version 5.0x Level 2 and 3 data quality and description document

(Tech. Rep. No. JPL D-105336 Rev. A, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2020.

Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry,415

A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J.,

Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.:

Solar forcing for CMIP6 (v3.2), Geoscientific Model Development, 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017.

Maycock, A. C., Matthes, K., Tegtmeier, S., Thiéblemont, R., and Hood, L.: The representation of solar cycle signals in stratospheric

ozone – Part 1: A comparison of recently updated satellite observations, Atmospheric Chemistry and Physics, 16, 10 021–10 043,420

https://doi.org/10.5194/acp-16-10021-2016, 2016.

McCormack, J. P. and Hood, L. L.: Apparent solar cycle variations of upper stratospheric ozone and temperature: Latitude and seasonal

dependences, Journal of Geophysical Research Atmospheres, 101, 20 933–20 944, https://doi.org/10.1029/96jd01817, 1996.

McLinden, C. A., Tegtmeier, S., and Fioletov, V.: Technical Note: A SAGE-corrected SBUV zonal-mean ozone data set, Atmospheric

Chemistry and Physics, 9, 7963–7972, https://doi.org/10.5194/acp-9-7963-2009, 2009.425

Merkel, A. W., Harder, J. W., Marsh, D. R., Smith, A. K., Fontenla, J. M., and Woods, T. N.: The impact of solar spectral irradiance variability

on middle atmospheric ozone, Geophysical Research Letters, 38, https://doi.org/10.1029/2011GL047561, 2011.

Millán, L. F., Livesey, N. J., Santee, M. L., Neu, J. L., Manney, G. L., and Fuller, R. A.: Case studies of the impact of orbital sampling

on stratospheric trend detection and derivation of tropical vertical velocities: solar occultation vs. limb emission sounding, Atmospheric

Chemistry and Physics, 16, 11 521–11 534, https://doi.org/10.5194/acp-16-11521-2016, 2016.430

Newchurch, M., Yang, E.-S., Cunnold, D., Reinsel, G. C., Zawodny, J., and Russell III, J. M.: Evidence for slowdown in stratospheric ozone

loss: First stage of ozone recovery, Journal of Geophysical Research: Atmospheres, 108, 2003.

Newman, P., Daniel, J., Waugh, D., and Nash, E.: A new formulation of equivalent effective stratospheric chlorine (EESC), Atmospheric

Chemistry and Physics, 7, 4537–4552, 2007.

Osprey, S. M., Butchart, N., Knight, J. R., Scaife, A. A., Hamilton, K., Anstey, J. A., Schenzinger, V., and Zhang, C.: An unexpected435

disruption of the atmospheric quasi-biennial oscillation, Science, 353, 1424–1427, https://doi.org/10.1126/science.aah4156, 2016.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Édouard Duchesnay: Scikit-learn: Machine Learning in Python,

Journal of Machine Learning Research, 12, 2825–2830, http://jmlr.org/papers/v12/pedregosa11a.html, 2011.

Petropavlovskikh, I., Godin-Beekmann, S., Hubert, D., Damadeo, R., Hassler, B., and Sofieva, V.: SPARC/IO3C/GAW Report on Long-term440

Ozone Trends and Uncertainties in the Stratosphere, Tech. rep., SPARC, 9th assessment report of the SPARC project, published by the

International Project Office at DLR-IPA. also: GAW Report No. 241; WCRP Report 17/2018, 2019.

Remsberg, E.: On the response of Halogen Occultation Experiment (HALOE) stratospheric ozone and temperature to the 11-year solar cycle

forcing, Journal of Geophysical Research: Atmospheres . . . , http://onlinelibrary.wiley.com/doi/10.1029/2008JD010189/full, 2008.

14

https://doi.org/10.5194/acp-2021-663
Preprint. Discussion started: 25 August 2021
c© Author(s) 2021. CC BY 4.0 License.



Remsberg, E. and Lingenfelser, G.: Analysis of SAGE II ozone of the middle and upper stratosphere for its response to a decadal-scale445

forcing, Atmospheric Chemistry and Physics, 10, 11 779–11 790, https://doi.org/10.5194/acp-10-11779-2010, 2010.

SILSO World Data Center: The International Sunspot Number, International Sunspot Number Monthly Bulletin and online catalogue, 2021.

Smith, A. and Matthes, K.: Decadal-scale periodicities in the stratosphere associated with the solar cycle and the QBO, Journal of Geophysical

Research: . . . , http://onlinelibrary.wiley.com/doi/10.1029/2007JD009051/full, 2008.

Snow, M., Weber, M., Machol, J., Viereck, R., and Richard, E.: Comparison of Magnesium II core-to-wing ratio observations during solar450

minimum 23/24, Journal of Space Weather and Space Climate, 4, A04, https://doi.org/10.1051/swsc/2014001, 2014.

Sofieva, V. F., Kalakoski, N., Päivärinta, S.-M., Tamminen, J., Laine, M., and Froidevaux, L.: On sampling uncertainty of satellite ozone

profile measurements, Atmospheric Measurement Techniques, 7, 1891–1900, https://doi.org/10.5194/amt-7-1891-2014, 2014.

Soukharev, B. E. and Hood, L. L.: Solar cycle variation of stratospheric ozone: Multiple regression analysis of long-term satellite data sets

and comparisons with models, Journal of Geophysical Research: Atmospheres, 111, https://doi.org/10.1029/2006JD007107, 2006.455

SPARC: SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models, Tech. rep., SPARC, http://www.sparc-climate.org/

publications/sparc-reports/, 2010.

Steinbrecht, W., Claude, H., and Winkler, P.: Enhanced upper stratospheric ozone: Sign of recovery or solar cycle effect?, Journal of Geo-

physical Research, 109, D02 308, https://doi.org/10.1029/2003JD004284, 2004.

Strahan, S. E. and Douglass, A. R.: Decline in Antarctic ozone depletion and lower stratospheric chlorine determined from Aura Microwave460

Limb Sounder observations, Geophysical Research Letters, 45, 382–390, 2018.

Swartz, W. H., Stolarski, R. S., Oman, L. D., Fleming, E. L., and Jackman, C. H.: Middle atmosphere response to different descrip-

tions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model, Atmospheric Chemistry and Physics, 12, 5937–5948,

https://doi.org/10.5194/acp-12-5937-2012, 2012.

Thomason, L.: Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinc-465

tion coefficient observations, Atmospheric Chemistry and Physics, 12, 8177–8188, 2012.

Tibshirani, R.: Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), 58,

267–288, 1996.

Toohey, M., Hegglin, M. I., Tegtmeier, S., Anderson, J., Añel, J. A., Bourassa, A., Brohede, S., Degenstein, D., Froidevaux, L., Fuller,

R., Funke, B., Gille, J., Jones, A., Kasai, Y., Krüger, K., Kyrölä, E., Neu, J. L., Rozanov, A., Smith, L., Urban, J., von Clarmann, T.,470

Walker, K. A., and Wang, R. H. J.: Characterizing sampling biases in the trace gas climatologies of the SPARC Data Initiative, Journal of

Geophysical Research: Atmospheres, 118, 11,847–11,862, https://doi.org/10.1002/jgrd.50874, 2013.

Wang, H., Cunnold, D., and Bao, X.: A critical analysis of stratospheric aerosol and gas experiment ozone trends, Journal of Geophysical

Research: Atmospheres, 101, 12 495–12 514, 1996.

Weber, M., Arosio, C., Feng, W., Dhomse, S. S., Chipperfield, M. P., Meier, A., Burrows, J. P., Eichmann, K.-U., Richter, A., and Rozanov, A.:475

The Unusual Stratospheric Arctic Winter 2019/20: Chemical Ozone Loss From Satellite Observations and TOMCAT Chemical Transport

Model, Journal of Geophysical Research: Atmospheres, 126, e2020JD034 386, https://doi.org/10.1029/2020JD034386, e2020JD034386

2020JD034386, 2021.

Yeo, K., Krivova, N., Solanki, S., and Glassmeier, K.: Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on

KPVT, SoHO/MDI, and SDO/HMI observations, Astronomy & Astrophysics, 570, A85, 2014.480

Zou, H. and Hastie, T.: Regularization and variable selection via the elastic net, Journal of the royal statistical society: series B (statistical

methodology), 67, 301–320, 2005.

15

https://doi.org/10.5194/acp-2021-663
Preprint. Discussion started: 25 August 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 1. Monthly mean ozone anomalies from MLS V5 (black line) for 2005-2020 and corresponding regression fits (orange line) for nine

different pressure levels at 1.5◦N. Corresponding residuals are shown at the bottom of each panel (pink dots). For clarity the residuals are

shifted by -20%.
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Figure 2. Comparison of ozone solar cycle signal (SCS) from various satellite data products for the tropical (20◦N–20◦S) region. SCS

derived using SAGE II V7.0 [1984-2005] data in terms of number density and mixing ratio units (Dhomse et al., 2016) are shown with

solid and dashed red lines, respectively. SCS from HALOE (1992–2005) and SAGE-corrected SBUV (McLinden et al., 2009) (1979–2005)

datasets are shown with aqua and purple lines, respectively (Dhomse et al., 2011). SCS from MLS V5 data (2005–2020) is shown with the

black line.
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Figure 3. Monthly mean ozone anomalies (%) from MLS V5 (black line) and three TOMCAT model simulations for the tropics (20◦S-20◦S)

for 2005-2020. Ozone anomalies from simulations with NRL V2 (Coddington et al., 2016), SATIRE (Yeo et al., 2014) and SORCE (Harder

et al., 2019) are shown with aqua, navy and red lines, respectively. Anomalies are shown for five pressure levels (top to bottom): 1 hPa, 3.1

hPa, 10 hPa, 31 hPa and 100 hPa.
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Figure 4. Latitude-pressure cross sections of solar regression coefficients (or Solar Cycle Signal per 100 solar flux unit) for MLS (top row)

as well as model simulation A_NRL (second row), B_SAT (third row) and C_SOR (bottom row). Regression coefficients are from OLS

(first column), Lasso (second column), Ridge (third column) and Elastic Net (fourth column) regression models.
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Figure 5. Solar cycle signal (SCS) for 2005-2020 period (per 100 solar flux unit) in tropical (20◦N–20◦S) stratospheric ozone from MLS

and model-simulated ozone profiles with four regression models (a) OLS, (b) Lasso, (c) Ridge and (d) Elastic Net. Horizontal lines show

averaged 2-σ uncertainties.
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Figure 6. Percentage difference in tropical ozone (20◦N–20◦S) between a model simulation with time-varying solar flux and a simulation

with fixed solar flux for (a) NRL2, (b) SATIRE and (c) SORCE. White coloured lines show zero contours.
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